Worthwhile Mathematical Tasks

The selected tasks and examples support how students view, develop, use and make sense of the mathematics.

We can...

___begin lessons with good tasks (low-floor/high ceiling; open)

Ability

The way mathematical tasks are realized in the classroom and experienced by students depends on the classroom environment, the tools and representations available for them to use, and the nature and focus of classroom discourse.⁵

Classroom Discourse

Opportunities are provided for students to justify and explain their thinking; examine conjectures, disagreements & counterarguments.

We can...

use verbal instructions

__ facilitate consolidation of students' thinking by selecting, sequencing, and connecting solutions⁶; negotiate meaning for emerging understandings)

_communicate where a student is and where they are going

We can...

___form [and use] visibly random groups (#vrg)

defront the classroom

____answer only *keep thinking* questions

___use hints and extensions to manage flow⁴

___foster autonomous actions

___communicate where a student is and where they are going (descriptive feedback)

___evaluate what we value (e.g., process over product; group + individual⁴)

____report out on data; not points (i.e., disaggregate evidence⁴; "What story does the data tell?")

Non-Threatening Classroom Environment

The classroom community encourages students to think, reason, communicate, reflect upon and critique that which they encounter.

Engaging the Pedagogical System^{1, 5}

Through

Building a Thinking Classroom^{2,7}

___encourage students to create meaningful notes ("What matters?" Success Criteria?)

We can...

__use vertical non-permanent surfaces (#vnps)

___encourage students to create meaningful notes ("What matters?" Success Criteria?)

__assign check your understanding questions (self-assess⁴)

___communicate where a student is and where they are going (descriptive feedback)

Tools & Representations

Students make their mathematical thinking visible. Representations and/or tools are used to do so, and they help students clarify their understandings.

Goal:

School Improvement Through a Thinking Classroom – Professional Learning Template for Learning Teams (Mathematics)

1)

Anthony, G., & Walshaw, M. (n.d.). The Pedagogical System with Reflective Questions. Retrieved December 30, 2017, from https://sim.thelearningexchange.ca/the-pedagogical-system-with-reflective-questions/

2)

Liljedahl, P. (n.d.). Building Thinking Classrooms-Keynote. OAME Leadership Conference, Ottawa (Nov 10, 2017). Retrieved December 30, 2017, from http://www.peterliljedahl.com/presentations

3)

The Learning Exchange. (n.d.). Ontario's Renewed Mathematics Strategy. Retrieved December 31, 2017, from https://rms.thelearningexchange.ca/

4)

Wheeler, L. (2017, November 21). Re: My #ThinkingClassroom Trio of Sketchnotes & Some Photos [Web log comment]. Retrieved December 31, 2017, from https://twitter.com/wheeler laura/status/933121783506653184)

5)

Anthony, G. and Walshaw, M. (2009). Effective Pedagogy in Mathematics. http://www.iaoed.org/downloads/EdPractices 19.pdf

6)

Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive mathematics discussions. Reston, VA: National Council of Teachers of Mathematics.

7)

Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem solving. In P. Felmer, J. Kilpatrick, & E. Pekhonen (eds.) Posing and Solving Mathematical Problems: Advances and New Perspectives. New York, NY: Springer.

Goal:

